Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 135: 298-308, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562812

RESUMO

Self-sustained smouldering combustion presents strong potential as a green waste-to-energy technique for a range of wastes, especially those with high moisture content like wastewater sewage sludge. While well-demonstrated in laboratory experiments, there is little known about scaling up this process to larger, commercial reactors. This paper addresses this knowledge gap by systematically conducting and analyzing experiments in a variety of reactors extending beyond the laboratory scale. This work reveals a robust treatment regime; however, it also identifies potential complications associated with perimeter heat losses at scale. Two key impacts, on the smouldering reactions and the air flow patterns, are shown to potentially degrade treatment if not properly understood and managed. Altogether, this study provides novel insight and guidance for scaling up smouldering science into practical, waste-to-energy systems.


Assuntos
Esgotos , Águas Residuárias , Eliminação de Resíduos Líquidos
2.
Sci Rep ; 7(1): 5302, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706190

RESUMO

The coal fires, a global catastrophe for hundreds of years, have been proved extremely difficult to control, and hit almost every coal-bearing area globally. Meanwhile, underground coal fires contain tremendous reservoir of geothermal energy. Approximately one billion tons of coal burns underground annually in the world, which could generate ~1000 GW per annum. A game-changing approach, environmentally sound thermal energy extraction from the intractable natural coalfield fires, is being developed by utilizing the waste energy and reducing the temperature of coalfield fires at the same time. Based on the Seebeck effect of thermoelectric materials, the temperature difference between the heat medium and cooling medium was employed to directly convert thermal energy into clean electrical energy. By the time of December 2016, the power generation from a single borehole at Daquan Lake fire district in Xinjiang has been exceeded 174.6 W. The field trial demonstrates that it is possible to exploit and utilize the waste heat resources in the treated coal fire areas. It promises a significant impact on the structure of global energy generation and can also promote progress in thermoelectric conversion materials, geothermal exploration, underground coal fires control and other energy related areas.

3.
Fuel (Lond) ; 190: 58-66, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28216695

RESUMO

A new approach for the rapid destruction of human waste using smouldering combustion is presented. Recently, self-sustaining smouldering combustion was shown to destroy the organic component of simulated human solid waste and dog faeces resulting in the sanitization of all pathogens using a batch process (Yermán et al., 2015). Here, a continuous smouldering process is demonstrated for the first time, allowing for a much smaller reactor size and much less energy input per mass of waste treated. The self-sustained smouldering of simulated human faeces mixed with sand is evaluated over long periods (more than 16 h) based on a single ignition. The key process of intermittent self-sustained smouldering, in which the reaction is terminated and restarted by only turning the air off and on, is demonstrated. Experiments examine the influence of two key operator controls: airflow rate and set elevation of the quasi-steady-state smouldering front in a 37 cm high reactor. Quasi-steady-state fuel destruction rates from 93 g/h to 12 g/h were achieved by varying the superficial flow velocity from 7.4 cm/s to 0.11 cm/s, the latter with a velocity approximately an order of magnitude lower than possible for a self-sustaining reaction in an equivalent batch system. Excess energy of up to 140 J/g of sand was recovered from the clean sand produced in each cycle, which could be used to further increase the energy efficiency of this novel waste treatment system.

4.
Environ Sci Technol ; 49(24): 14334-42, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26523324

RESUMO

Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.


Assuntos
Alcatrão/química , Poluição Ambiental/análise , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Carvão Mineral , Hidrocarbonetos/isolamento & purificação , Peso Molecular , Petróleo/análise , Projetos Piloto , Solo , Temperatura , Volatilização
5.
J Hazard Mater ; 268: 51-60, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24468525

RESUMO

Smouldering remediation is a process that has been introduced recently to address non-aqueous phase liquid (NAPL) contamination in soils and other porous media. Previous work demonstrated this process to be highly effective across a wide range of contaminants and soil conditions at the bench scale. In this work, a suite of 12 experiments explored the effectiveness of the process as operating scale was increased 1000-fold from the bench (0.003m(3)) to intermediate (0.3m(3)) and pilot field-scale (3m(3)) with coal tar and petrochemical NAPLs. As scale increased, remediation efficiency of 97-99.95% was maintained. Smouldering propagation velocities of 0.6-14×10(-5)m/s at Darcy air fluxes of 1.54-9.15cm/s were consistent with observations in previous bench studies, as was the dependence on air flux. The pilot field-scale experiments demonstrated the robustness of the process despite heterogeneities, localised operation, controllability through airflow supply, and the importance of a minimum air flux for self-sustainability. Experiments at the intermediate scale established a minimum-observed, not minimum-possible, initial concentration of 12,000mg/kg in mixed oil waste, providing support for the expectation that lower thresholds for self-sustaining smouldering decreased with increasing scale. Once the threshold was exceeded, basic process characteristics of average peak temperature, destructive efficiency, and treatment velocity were relatively independent of scale.


Assuntos
Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Modelos Teóricos , Poluentes do Solo/isolamento & purificação , Solo/química , Recuperação e Remediação Ambiental/instrumentação , Desenho de Equipamento , Transição de Fase , Projetos Piloto , Porosidade , Gerenciamento de Resíduos
6.
Environ Sci Technol ; 45(7): 2980-6, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21351763

RESUMO

Smoldering combustion has been introduced recently as a potential remediation strategy for soil contaminated by nonaqueous phase liquids (NAPLs). Published proof-of-concept experiments demonstrated that the process can be self-sustaining (i.e., requires energy input only to start the process) and achieve essentially complete remediation of the contaminated soil. Those initial experiments indicated that the process may be applicable across a broad range of NAPLs and soils. This work presents the results of a series of bench-scale experiments that examine in detail the sensitivity of the process to a range of key parameters, including contaminant concentration, water saturation, soil type, and air flow rates for two contaminants, coal tar and crude oil. Smoldering combustion was observed to be self-sustaining in the range 28,400 to 142,000 mg/kg for coal tar and in the range 31,200 to 104,000 mg/kg for crude oil, for the base case air flux. The process remained self-sustaining and achieved effective remediation across a range of initial water concentrations (0 to 177,000 mg/kg water) despite extended ignition times and decreased temperatures and velocities of the reaction front. The process also exhibited self-sustaining and effective remediation behavior across a range of fine to coarse sand grain sizes up to a threshold maximum value between 6 mm and 10 mm. Propagation velocity is observed to be highly dependent on air flux, and smoldering was observed to be self-sustaining down to an air Darcy flux of at least 0.5 cm/s for both contaminants. The extent of remediation in these cases was determined to be at least 99.5% and 99.9% for crude oil and coal tar, respectively. Moreover, no physical evidence of contamination was detected in the treatment zone for any case where a self-sustaining reaction was achieved. Lateral heat losses to the external environment were observed to significantly affect the smoldering process at the bench scale, suggesting that the field-scale lower bounds on concentration and air flux and upper bound on grain size were not achieved; larger scale experiments and field trials where lateral heat losses are much less significant are necessary to define these process limits for the purposes of field application. This work provides valuable design data for pilot field trials of both in situ and ex situ smoldering remediation applications.


Assuntos
Recuperação e Remediação Ambiental/métodos , Compostos Orgânicos/química , Poluentes do Solo/química , Alcatrão/análise , Alcatrão/química , Creosoto/análise , Creosoto/química , Hidrocarbonetos/análise , Hidrocarbonetos/química , Incineração/métodos , Compostos Orgânicos/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Solo/química , Poluentes do Solo/análise
7.
Opt Lett ; 30(24): 3311-3, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16389815

RESUMO

A remote scanning retrieval method was developed to investigate the soot layer produced by a laminar diffusion flame established over a flat plate burner in microgravity. Experiments were conducted during parabolic flights. This original application of an inverse problem leads to the three-dimensional recomposition by layers of the absorption field inside the flame. This technique provides a well-defined flame length that substitutes for other subjective definitions associated with emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...